爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

高考数学高分方法:高中函数值域的求法

发布于:百学网 2016-03-11

高考数学高分方法:高中函数值域的求法

  一.观察法

  通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

  例1求函数y=3+√(2-3x)的值域。

  点拨:根据算术平方根的性质,先求出√(2-3x)的值域。

  解:由算术平方根的性质,知√(2-3x)≥0,

  故3+√(2-3x)≥3。

  ∴函数的知域为.

  点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性。

  本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。

  练习:求函数y=[x](0≤x≤5)的值域。(答案:值域为:{0,1,2,3,4,5})

  二.反函数法

  当函数的反函数存在时,则其反函数的定义域就是原函数的值域。

  例2求函数y=(x+1)/(x+2)的值域。

  点拨:先求出原函数的反函数,再求出其定义域。

  解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y-1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}。

  点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数。这种方法体现逆向思维的思想,是数学解题的重要方法之一。

  练习:求函数y=(10x+10-x)/(10x-10-x)的值域。(答案:函数的值域为{y∣y<-1或y>1})

  三.配方法

  当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域

  例3:求函数y=√(-x2+x+2)的值域。

  点拨:将被开方数配方成平方数,利用二次函数的值求。

  解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2]。此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]

  ∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]

  点评:求函数的值域不但要重视对应关系的应用,而且要特别注意定义域对值域的制约作用。配方法是数学的一种重要的思想方法。

  练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})

  四.判别式法

  若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域。

  例4求函数y=(2x2-2x+3)/(x2-x+1)的值域。

  点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域。

  解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)

  当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2

  当y=2时,方程(*)无解。∴函数的值域为2

  点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

  练习:求函数y=1/(2x2-3x+1)的值域。(答案:值域为y≤-8或y>0)。

  五.值法

  对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的较值,并与边界值f(a).f(b)作比较,求出函数的值,可得到函数y的值域。

  例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域。

  点拨:根据已知条件求出自变量x的取值范围,将目标函数消元、配方,可求出函数的值域。

  解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),

  ∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较边界的大小。

  当x=-1时,z=-5;当x=3/2时,z=15/4。

  ∴函数z的值域为{z∣-5≤z≤15/4}。

  点评:本题是将函数的值域问题转化为函数的值。对开区间,若存在值,也可通过求出值而获得函数的值域。

  练习:若√x为实数,则函数y=x2+3x-5的值域为()

  A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)

  (答案:D)。

  六.图象法

  通过观察函数的图象,运用数形结合的方法得到函数的值域。

  例6求函数y=∣x+1∣+√(x-2)2的值域。

  点拨:根据值的意义,去掉符号后转化为分段函数,作出其图象。

  解:原函数化为-2x+1(x≤1)

  y=3(-1

  2x-1(x>2)

  它的图象如图所示。

  显然函数值y≥3,所以,函数值域[3,+∞]。

  点评:分段函数应注意函数的端点。利用函数的图象

  求函数的值域,体现数形结合的思想。是解决问题的重要方法。

  求函数值域的方法较多,还适应通过不等式法、函数的单调性、换元法等方法求函数的值域。

  七.单调法

  利用函数在给定的区间上的单调递增或单调递减求值域。

  例1求函数y=4x-√1-3x(x≤1/3)的值域。

  点拨:由已知的函数是复合函数,即g(x)=-√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内分别讨论函数的增减性,从而确定函数的值域。

  解:设f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-√1-3x

  在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。

  点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域。

  练习:求函数y=3+√4-x的值域。(答案:{y|y≥3})

  八.换元法

  以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

  例2求函数y=x-3+√2x+1的值域。

  点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的值,确定原函数的值域。

  解:设t=√2x+1(t≥0),则

  x=1/2(t2-1)。

  于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.

  所以,原函数的值域为{y|y≥-7/2}。

  点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的值,从而确定出原函数的值域。这种解题的方法体现换元、化归的思想方法。它的应用十分广泛。

  练习:求函数y=√x-1–x的值域。(答案:{y|y≤-3/4}

  九.构造法

  根据函数的结构特征,赋予几何图形,数形结合。

  例3求函数y=√x2+4x+5+√x2-4x+8的值域。

  点拨:将原函数变形,构造平面图形,由几何知识,确定出函数的值域。

  解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22

  作一个长为4、宽为3的矩形ABCD,再切割成12个单位

  正方形。设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22,

  KC=√(x+2)2+1。

  由三角形三边关系知,AK+KC≥AC=5。当A、K、C三点共

  线时取等号。

  ∴原函数的知域为{y|y≥5}。

  点评:对于形如函数y=√x2+a±√(c-x)2+b(a,b,c均为正数),均可通过构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。

  练习:求函数y=√x2+9+√(5-x)2+4的值域。(答案:{y|y≥5√2})

  十.比例法

  对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域。

  例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域。

  点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数。

  解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)

  ∴x=3+4k,y=1+3k,

  ∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1。

  当k=-3/5时,x=3/5,y=-4/5时,zmin=1。

  函数的值域为{z|z≥1}.

  点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题方法体现诸多思想方法,具有一定的创新意识。

  练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y的值域。(答案:{f(x,y)|f(x,y)≥1})

  十一.利用多项式的除法

  例5求函数y=(3x+2)/(x+1)的值域。

  点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和。

  解:y=(3x+2)/(x+1)=3-1/(x+1)。

  ∵1/(x+1)≠0,故y≠3。

  ∴函数y的值域为y≠3的一切实数。

  点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种方法。

  练习:求函数y=(x2-1)/(x-1)(x≠1)的值域。(答案:y≠2)

  十二.不等式法

  例6求函数Y=3x/(3x+1)的值域。

  点拨:先求出原函数的反函数,根据自变量的取值范围,构造不等式。

  解:易求得原函数的反函数为y=log3[x/(1-x)],

  由对数函数的定义知x/(1-x)>0

  1-x≠0

  解得,0

  ∴函数的值域(0,1)。

  点评:考查函数自变量的取值范围构造不等式(组)或构造重要不等式,求出函数定义域,进而求值域。不等式法是重要的解题工具,它的应用非常广泛。是数学解题的方法之一。

  以下供练习选用:求下列函数的值域

  1.Y=√(15-4x)+2x-5;({y|y≤3})

  2.Y=2x/(2x-1)。(y>1或y<0)

  注意变量哦

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章

小学数学学习(三年级到五年级)方法

我的很多同辈朋友的孩子也到了小学了,很多朋友早就催更小学篇了,今天我也加了个班,把这篇文章早点写出来。 今天谈一下小学数学学习,尤其是小学三年级到五年级这个时间段。大家如果对于小学低龄段有疑问,请看上一篇文章。为什么没有把六年级放进来,在北...
2024-01-03

数学学习-初中至高中

首先,我们来定义一下初中学段。现在我们国家很多省市地区都是六-三-三学制,即小学六年,初中三年,高中三年。这里,我简单介绍一下二四学制,在北京生活的家长肯定都听说过十一学校的二四学制,简单来说,就是初中两年,高中四年。这里需要提一位教育家,...
2024-01-03

高中数学效果好的学习方法

继续谈一下我理解的高中学段的数学学习。很多是个人观点,欢迎大家批评指正。 首先,跟大家普及一个概念,就是高中不是义务教育,高中存在的战略意义是为了国家选拔人才的,这样你可能就能理解了为什么高中的知识会这么难。 上次我谈到准备选十一学校(公办学...
2024-01-03

国际化学校的数学学习有何不同

首先祝大家新年快乐,祝愿大家新的一年都心想事成。 这期话题我聚焦到国际化学校的数学学习上,希望对目前在国际化学校或者即将上国际化学校的学生和价值有帮助。 个人认为,国际化学校的数学学习与我们体制内学校的数学学习有相似,也有不同。 先说不同。不...
2024-01-03

为什么会有学生讨厌学习数学

一,林晖博的疑问为什么从来不因为成绩打他骂他 昨天林晖博突然问:为什么你们从来没有因为我的测试分数不高而骂过我,打过我?我觉得莫名其妙,反问:为什么要骂要打?你为什么会问这么奇怪的问题。他说他们班有一些同学会因为分数不理想被家长骂甚至被打。今天...
2023-12-29

英语语法学习方法

学习英语语法是一个需要不断练习和理解的过程。以下是一些学习英语语法的方法: 1. 理解语法规则:学习语法不仅仅是记住规则,而是要理解规则。例如,在学习动词时态时,你需要理解每种时态的意义和用法,而不仅仅是记住它们的名称和形式。 2. 练习使用语法...
2023-12-12