爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

高考数学答题方法的19条铁律,还送5种答题思路

发布于:百学网 2016-05-16

高考数学答题方法的19条铁律,还送5种答题思路

  小数老师说

  做题时,有一些“条件反射”你应该记住,这能帮你大大的节省时间!具体的看看下面吧!对你一定有帮助哦!

  1.函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

  2.如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法

  3.面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……;

  4.选择与填空中出现不等式的题目,优选特殊值法;

  5.求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;

  6.恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;

  7.圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;

  8.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点);

  9.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可;

  10.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围;

  11.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想;

  12.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角三角形解题;

  13.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上;

  14.概率的题目如果出解答题,应该先设事件,然后写出使用公式的理由,当然要注意步骤的多少决定解答的详略;如果有分布列,则概率和为1是检验正确与否的重要途径;

  15.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成;

  16.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等;

  17.绝对值问题优先选择去绝对值,去绝对值优先选择使用定义;

  18.与平移有关的,注意口诀“左加右减,上加下减”只用于函数,沿向量平移一定要使用平移公式完成;

  19.关于中心对称问题,只需使用中点坐标公式就可以,关于轴对称问题,注意两个等式的运用:一是垂直,一是中点在对称轴上。

  高考数学答题思路

  在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约思考时间。以下总结高考数学五大解题思想,帮助同学们更好地提分。

  1、函数与方程思想

  函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解题时可利用转化思想进行函数与方程间的相互转化。

  2、数形结合思想

  中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

  3、特殊与一般的思想

  用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。

  4、极限思想解题步骤

  极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

  5、分类讨论思想

  同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类讨论解题时,要做到标准统一,不重不漏。

  掌握数学解题思想是解答数学题时不可缺少的一步,建议同学们在做题型训练之前先了解数学解题思想,掌握解题技巧,并将做过的题目加以划分,以便在高考前一个月集中复习。

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章

大学四六级阅读题的答题步骤和技巧汇总

之前我们为同学们总结了很多关于英语四六级的学习方法和答题策略,大家有没有应用起来呢?同学们可以留言四六级获取推文哦! 四六级考试中,阅读题占比很大,如何快速并轻松的作答阅读题就成了同学们非常关注的问题啦! 英语四六级 | 四六级阅读答题步骤和技巧...
2024-01-04

小学数学学习(三年级到五年级)方法

我的很多同辈朋友的孩子也到了小学了,很多朋友早就催更小学篇了,今天我也加了个班,把这篇文章早点写出来。 今天谈一下小学数学学习,尤其是小学三年级到五年级这个时间段。大家如果对于小学低龄段有疑问,请看上一篇文章。为什么没有把六年级放进来,在北...
2024-01-03

数学学习-初中至高中

首先,我们来定义一下初中学段。现在我们国家很多省市地区都是六-三-三学制,即小学六年,初中三年,高中三年。这里,我简单介绍一下二四学制,在北京生活的家长肯定都听说过十一学校的二四学制,简单来说,就是初中两年,高中四年。这里需要提一位教育家,...
2024-01-03

高中数学效果好的学习方法

继续谈一下我理解的高中学段的数学学习。很多是个人观点,欢迎大家批评指正。 首先,跟大家普及一个概念,就是高中不是义务教育,高中存在的战略意义是为了国家选拔人才的,这样你可能就能理解了为什么高中的知识会这么难。 上次我谈到准备选十一学校(公办学...
2024-01-03

国际化学校的数学学习有何不同

首先祝大家新年快乐,祝愿大家新的一年都心想事成。 这期话题我聚焦到国际化学校的数学学习上,希望对目前在国际化学校或者即将上国际化学校的学生和价值有帮助。 个人认为,国际化学校的数学学习与我们体制内学校的数学学习有相似,也有不同。 先说不同。不...
2024-01-03

为什么会有学生讨厌学习数学

一,林晖博的疑问为什么从来不因为成绩打他骂他 昨天林晖博突然问:为什么你们从来没有因为我的测试分数不高而骂过我,打过我?我觉得莫名其妙,反问:为什么要骂要打?你为什么会问这么奇怪的问题。他说他们班有一些同学会因为分数不理想被家长骂甚至被打。今天...
2023-12-29