爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

2015高中自主招生考试数学试卷

发布于:百学网 2017-05-21

2015高中自主招生考试数学试卷

2015高中自主招生考试数学模拟试卷

一、选择题(本大题共8小题,每小题3分,共24分.).

1.(3分)若不等式组

的解集是x>3,则m的取值范围是

2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=

(2)

(3

)3.(3分)(2011?南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P

4.(3分)已知y=

5.(3分)(2010?泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P

点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是+(x,y均为实数),则y的最大值与最小值的差为

6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了

2

7.(3分)二次函数y=ax+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)

(6)

(7)

(8)

8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、

CP,如果

,那么△ABC的内切圆半径为(

二、填空题(本大题共8小题,每小题3分,共

24分)

9.(3分)

与是相反数,计算=.

10(.3分)若[x]表示不超过x的最大整数,

,则[A]=.

11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则

=

(11)

(12)

12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.

13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.

14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.

15.(3分)(2010?随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.

(15)

(16)

16.(3分)(2010?随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的

侧面的面积最大时,圆柱的底面半径是_________cm.

三、解答题(72)

17.(14分)已知抛物线y=﹣x+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;

(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三

角形?若存在,求出Q点坐标;若不存在,说明理由.

2

18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车

需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.

19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与

BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.

(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.

20.(15分)如图,已知菱形ABCD边长为

,∠ABC=120°,点P在线段BC延长线上,半径为r1的

圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.

21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,

求m的值;若不存在,请说明理由.

13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.

14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.

15.(3分)(2010?随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.

(15)

(16)

16.(3分)(2010?随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的

侧面的面积最大时,圆柱的底面半径是_________cm.

三、解答题(72)

17.(14分)已知抛物线y=﹣x+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.

(1)求抛物线的解析式;

(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三

角形?若存在,求出Q点坐标;若不存在,说明理由.

2

18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.

19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与

BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.

(1)猜想:CE与DF的大小关系?并证明你的猜想.

(2)猜想:H是△AEF的什么心?并证明你的猜想.

20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.

(1)求菱形的面积;

(2)求证:EF=MN;

(3)求r1+r2的值.

21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点

B、C,与y轴相交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2,2),求实数m的值;

(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,

求m的值;若不存在,请说明理由.

(1)猜想:CE与DF的大小关系?并证明你的猜想.

(2)猜想:H是△AEF的什么心?并证明你的猜想.

20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.

(1)求菱形的面积;

(2)求证:EF=MN;

(3)求r1+r2的值.

21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点

B、C,与y轴相交于点E,且点B在点C的左侧.

(1)若抛物线C1过点M(2,2),求实数m的值;

(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,

求m的值;若不存在,请说明理由.

2015高中自主招生考试数学模拟试卷

一、选择题(本大题共8小题,每小题3分,共24分.).

1.(3分)若不等式组

的解集是x>3,则m的取值范围是

2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=

(2)

(3

)3.(3分)(2011?南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆

上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P

4.(3分)已知y=

5.(3分)(2010?泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出

发,绕圆锥侧面爬行,回到P

点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是

+(x,y均为实数),则y的最大值与最小值的差为

6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了

2

7.(3分)二次函数y=ax+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)

(6)

(7)

(8)

8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、

CP,如果

,那么△ABC的内切圆半径为(

二、填空题(本大题共8小题,每小题3分,共

24分)

9.(3分)

与是相反数,计算=.

10(.3分)若[x]表示不超过x的最大整数,

,则[A]=.

11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则

=

(11)

(12)

12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.

13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.

14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.

15.(3分)(2010?随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.

(15)

(16)

16.(3分)(2010?随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的

侧面的面积最大时,圆柱的底面半径是_________cm.

三、解答题(72)

17.(14分)已知抛物线y=﹣x+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;

(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三

角形?若存在,求出Q点坐标;若不存在,说明理由.

2

18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车

需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.

19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与

BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.

(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.

20.(15分)如图,已知菱形ABCD边长为

,∠ABC=120°,点P在线段BC延长线上,半径为r1的

圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.

21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,

求m的值;若不存在,请说明理由.

2015高中自主招生考试数学模拟试卷

一、选择题(本大题共8小题,每小题3分,共24分.).

1.(3分)若不等式组

的解集是x>3,则m的取值范围是

2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=

(2)

(3

)3.(3分)(2011?南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆

上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P

4.(3分)已知y=

5.(3分)(2010?泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出

发,绕圆锥侧面爬行,回到P

点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是

+(x,y均为实数),则y的最大值与最小值的差为

6.(3分)如图(6),已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了

2

7.(3分)二次函数y=ax+bx+c的图象如下图(7),则以下结论正确的有:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)

(6)

(7)

(8)

8.(3分)如图8,正△ABC中,P为正三角形内任意一点,过P作PD⊥BC,PE⊥AB,PF⊥AC连结AP、BP、

CP,如果

,那么△ABC的内切圆半径为(

二、填空题(本大题共8小题,每小题3分,共

24分)

9.(3分)

与是相反数,计算=.

10(.3分)若[x]表示不超过x的最大整数,

,则[A]=.

11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则

=

(11)

(12)

12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为_________.

13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是_________.

14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是_________.

15.(3分)(2010?随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是_________cm.

(15)

(16)

16.(3分)(2010?随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的

侧面的面积最大时,圆柱的底面半径是_________cm.

三、解答题(72)

17.(14分)已知抛物线y=﹣x+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;

(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三

角形?若存在,求出Q点坐标;若不存在,说明理由.

2

18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车

需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.

19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与

BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.

(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.

20.(15分)如图,已知菱形ABCD边长为

,∠ABC=120°,点P在线段BC延长线上,半径为r1的

圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.

21.(15分)(2012?黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;

(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;

(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,

求m的值;若不存在,请说明理由.

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章

2012年北约自主招生考试英语试题及答案

2012北约英语自主招生真题I.Cloze(20points)Directions:Readthefollowingtextandchoosethebestwo...
2017-06-05

中央民族大学附属中学2013自主招生考试理化试题及答案

2013年度统一招生考试理化试题及答案可能用到相对原子质量:H1C12N14O16Na23S32Cl35.5Ca40...
2017-06-05

2016年高中部自主招生考试试题

2016年高中部自主招生考试试题数学(试题卷)一.选择题(共6小题,每小题6分,共36分)1.一列数a1,a2,a3,…,其中a1=,an=(n为不小于2的整数...
2017-05-29

2015年温州中学自主招生选拔考试数学试题

2015年温州中学自主招生选拔考试数学试题(本试卷满分150分,考试时间120分钟)一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的的四个选项...
2017-05-29

重点高中自主招生化学试题

2014年重点高中自主招生化学试题可能用到的相对原子质量:H1C12N14O16Na23Mg24S32Cl35.5K39Ca40Fe56Cu64Zn65I127...
2017-05-29

国家重点中学自主招生考试物理试题

高中自主招生考试物理试题...
2017-05-29