爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

数学专项辅导:旋转体知识点汇总

发布于:百学网 2011-09-27

数学专项辅导:旋转体知识点汇总

  1.在中学我们只研直圆柱、直圆锥和直圆台。所以对圆柱、圆锥、圆台的旋转定义、实际上是直圆柱、直圆锥、直圆台的定义。

  这样定义直观形象,便于理解,而且对它们的性质也易推导。

  对于球的定义中,要注意区分球和球面的概念,球是实心的。

  等边圆柱和等边圆锥是特殊圆柱和圆锥,它是由其轴截面来定义的,在实践中运用较广,要注意与一般圆柱、圆锥的区分。

  2.圆柱、圆锥、圆和球的性质

  (1)圆柱的性质,要强调两点:一是连心线垂直圆柱的底面;二是三个截面的性质——平行于底面的截面是与底面全等的圆;轴截面是一个以上、下底面圆的直径和母线所组成的矩形;平行于轴线的截面是一个以上、下底的圆的弦和母线组成的矩形。

  (2)圆锥的性质,要强调三点

  ①平行于底面的截面圆的性质:

  截面圆面积和底面圆面积的比等于从顶点到截面和从顶点到底面距离的平方比。

  ②过圆锥的顶点,且与其底面相交的截面是一个由两条母线和底面圆的弦组成的等腰三角形,其面积为:

  易知,截面三角形的顶角不大于轴截面的顶角(如图10-20),事实上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC.

  由于截面三角形的顶角不大于轴截面的顶角。

  所以,当轴截面的顶角θ≤90°,有0°<α≤θ≤90°,即有

  当轴截面的顶角θ>90°时,轴截面的面积却不是ZD的,这是因为,若90°≤α<θ<180°时,1≥sinα>sinθ>0.

  ③圆锥的母线l,高h和底面圆的半径组成一个直径三角形,圆锥的有关计算问题,一般都要归结为解这个直角三角形,特别是关系式

  l2=h2+R2

  (3)圆台的性质,都是从“圆台为截头圆锥”这个事实推得的,但仍要强调下面几点:

  ①圆台的母线共点,所以任两条母线确定的截面为一等腰梯形,但是,与上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

  ②平行于底面的截面若将圆台的高分成距上、下两底为两段的截面面积为S,则

  其中S1和S2分别为上、下底面面积。

  的截面性质的推广。

  ③圆台的母线l,高h和上、下两底圆的半径r、R,组成一个直角梯形,且有

  l2=h2+(R-r)2

  圆台的有关计算问题,常归结为解这个直角梯形。

  (4)球的性质,着重掌握其截面的性质。

  ①用任意平面截球所得的截面是一个圆面,球心和截面圆圆心的连线与这个截面垂直。

  ②如果用R和r分别表示球的半径和截面圆的半径,d表示球心到截面的距离,则

  R2=r2+d2

  即,球的半径,截面圆的半径,和球心到截面的距离组成一个直角三角形,有关球的计算问题,常归结为解这个直角三角形。

  3.圆柱、圆锥、圆台和球的表面积

  (1)圆柱、圆锥、圆台和多面体一样都是可以平面展开的。

  ①圆柱、圆锥、圆台的侧面展开图,是求其侧面积的基本依据。

  圆柱的侧面展开图,是由底面图的周长和母线长组成的一个矩形。

  ②圆锥和侧面展开图是一个由两条母线长和底面圆的周长组成的扇形,其扇形的圆心角为

  ③圆台的侧面展开图是一个由两条母线长和上、下底面周长组成的扇环,其扇环的圆心角为

  这个公式有利于空间几何体和其侧面展开图的互化

  显然,当r=0时,这个公式就是圆锥侧面展开图扇形的圆心角公式,所以,圆锥侧面展开图扇形的圆心角公式是圆台相关角的特例。

  (2)圆柱、圆锥和圆台的侧面公式为

  S侧=π(r+R)l

  当r=R时,S侧=2πRl,即圆柱的侧面积公式。

  当r=0时,S侧=rRl,即圆锥的面积公式。

  要重视,侧面积间的这种关系。

  (3)球面是不能平面展开的图形,所以,求它的面积的方法与柱、锥、台的方法完全不同。

  推导出来,要用“微积分”等高等数学的知识,课本上不能算是一种证明。

  求不规则圆形的度量属性的常用方法是“细分——求和——取极限”,这种方法,在学完“微积分”的相关内容后,不证自明,这里从略。

  4.画圆柱、圆锥、圆台和球的直观图的方法——正等测

  (1)正等测画直观图的要求:

  ①画正等测的X、Y、Z三个轴时,z轴画成铅直方向,X 轴和Y轴各与Z轴成120°。

  ②在投影图上取线段长度的方法是:在三轴上或平行于三轴的线段都取实长。

  这里与斜二测画直观图的方法不同,要注意它们的区别。

  (2)正等测圆柱、圆锥、圆台的直观图的区别主要是水平放置的平面图形。

  用正等测画水平放置的平面圆形时,将X轴画成水平位置,Y轴画成与X轴成120°,在投影图上,X轴和Y轴上,或与X轴、Y轴平行的线段都取实长,在Z轴上或与Z轴平行的线段的画法与斜二测相同,也都取实长。

  5.关于几何体表面内两点间的最短距离问题

  柱、锥、台的表面都可以平面展开,这些几何体表面内两点间最短距离,就是其平面内展开图内两点间的线段长。

  由于球面不能平面展开,所以求球面内两点间的球面距离是一个全新的方法,这个最短距离是过这两点大圆的劣弧长。

相关阅读

专家指导:高二数学学习方法浅谈

数学专项辅导:球的相关知识汇总

高中数学解析几何中求参数取值范围的方法

方法指导:高二数学复习的八种方法

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章

北师大版初中数学知识点总结

北师大版初中数学教材,一共六本书,共计31章,有268个考点共计740个知识点。 具体情况如下,详细考点及知识点全部在文后。 七年级上册一共5章,有44个考点共计125个知识点 第一章,丰富的图形世界,有6个考点共计14个知识点; 第二章,有理数及其运算,有12...
2023-11-06

数学必修一知识点

数学必修一知识点(精选5篇) 数学必修一知识点要怎么写,才更标准规范?根据多年的文秘写作经验,参考优秀的数学必修一知识点样本能让你事半功倍,下面分享【数学必修一知识点】相关方法经验,供你参考借鉴。 数学必修一知识点有哪些 高中数学必修一涉及的知...
2023-09-14

2023五年级最新数学上册知识点归纳

2023五年级最新数学上册知识点归纳(8篇) 掌握上册知识点有助于大家更好的学习。在日常过程学习中,看到知识点,都是先收藏再说吧!知识点也可以理解为考试时会涉及到的知识,也就是大纲的分支。下面是小编给大家整理的2023五年级最新数学上册知识点归纳,仅...
2023-08-22

人教版五年级数学上册重点知识点模板

人教版五年级数学上册重点知识点模板(8篇) 数学是研究数量、结构、变化、空间以及信息等概念的一门学科。那哪些才是我们真正需要的数学知识点呢?下面是小编给大家整理的人教版五年级数学上册重点知识点模板,仅供参考希望能帮助到大家。 人教版五年级数学...
2023-08-22

五年级上册数学重点知识点模板

五年级上册数学重点知识点模板(8篇) 哪些才是我们真正需要的五年级知识点呢?在现实学习生活中,不管我们学什么,都需要掌握一些知识点,知识点就是学习的重点。下面是小编给大家整理的五年级上册数学重点知识点模板,仅供参考希望能帮助到大家。 五年级上...
2023-08-22

最新五年级上册数学科目知识点模板

最新五年级上册数学科目知识点模板(8篇) 数学是其他学科的学习基础,五年级数学知识点对小朋友们的数学学习非常重要,大家一定要认真掌握。下面是小编给大家整理的最新五年级上册数学科目知识点模板,仅供参考希望能帮助到大家。 最新五年级上册数学科目知...
2023-08-22