爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

人教版五年级数学上册重点知识点模板

发布于:百学网 2023-08-22

人教版五年级数学上册重点知识点模板

  人教版五年级数学上册重点知识点模板(8篇)

  数学是研究数量、结构、变化、空间以及信息等概念的一门学科。那哪些才是我们真正需要的数学知识点呢?下面是小编给大家整理的人教版五年级数学上册重点知识点模板,仅供参考希望能帮助到大家。

  人教版五年级数学上册重点知识点模板篇1

  公式:长方形:周长=(长+宽)×2——【长=周长÷2-宽;宽=周长÷2-长】字母公式:C=(a+b)×2

  面积=长×宽字母公式:S=ab

  正方形:周长=边长×4字母公式:C=4a

  面积=边长×边长字母公式:S=a

  平行四边形的面积=底×高字母公式: S=ah

  三角形的面积=底×高÷2 ——【底=面积×2÷高;高=面积×2÷底】字母公式: S=ah÷2

  梯形的面积=(上底+下底)×高÷2字母公式: S=(a+b)h÷2

  ——【上底=面积×2÷高-下底,下底=面积×2÷高-上底;高=面积×2÷(上底+下底)】

  行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转

  平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形;

  长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;

  长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;

  长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的2倍,

  因为长方形面积=长×宽,所以平行四边形面积=底×高。因为平行四边形面积=底×高,所以三角形面积=底×高÷2

  形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书,两个完全一样的梯形可以拼成一个平行四边形,知道就行。

  平行四边形的底相当于梯形的上下底之和;

  平行四边形的高相当于梯形的高;

  平行四边形面积等于梯形面积的2倍,因为平行四边形面积=底×高,所以梯形面积=(上底+下底)×高÷2

  底等高的平行四边形面积相等;等底等高的三角形面积相等;

  等底等高的平行四边形面积是三角形面积的2倍。

  方形框架拉成平行四边形,周长不变,面积变小。

  合图形:转化成已学的简单图形,通过加、减进行计算。

  人教版五年级数学上册重点知识点模板篇2

  一、学习目标:

  1.探索小数乘法、除法的计算方法,能正确进行笔算,并能对其中的算理做出合理的解释;

  2.会用“四舍五入”法截取积是小数的近似值;培养从不同角度观察,分析事物的能力;

  3.理解用字母表示数的意义和作用;

  4.理解简易方程的意思及其解法;

  5.在理解的基础上掌握平行四边形面积的计算公式,并会运用公式正确地计算平行四边形的面积。

  二、学习难点:

  1.能正确进行乘号的简写,略写;小数乘法的计算法则;

  2.小数乘法中积的小数位数和小数点的定位,乘得的积小数位数不够的,要在前面用0补足;

  3.除数是整数的小数除法的计算方法;理解商的小数点要与被除数的小数点对齐的道理;

  4.构建初步的空间想象力;

  5.用字母表示数的意义和作用;

  6.多边形面积的计算。

  三、知识点概念总结:

  1.小数乘整数的意义:求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。

  2.小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。

  3.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。

  4.除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。

  5.除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。

  6.积的近似数:四舍五入是一种精确度的计数保留法,与其他方法本质相同。但特殊之处在于,采用四舍五入,能使被保留部分的与实际值差值不超过最后一位数量级的二分之一:假如0~9等概率出现的话,对大量的被保留数据,这种保留法的误差总和是最小的。

  7.数的互化:

  (1)小数化成分数

  原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。

  (2)分数化成小数

  用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。

  (3)化有限小数

  一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。

  (4)小数化成百分数

  只要把小数点向右移动两位,同时在后面添上百分号。

  (5)百分数化成小数

  把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。

  (6)分数化成百分数

  通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。

  (7)百分数化成小数

  先把百分数改写成分数,能约分的要约成最简分数。

  8.小数的分类:

  (1)有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。

  (2)无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……

  (3)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。

  (4)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109……;一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。

  9.循环节:如果无限小数的小数点后,从某一位起向右进行到某一位止的一节数字循环出现,首尾衔接,称这种小数为循环小数,这一节数字称为循环节。把循环小数写成个别项与一个无穷等比数列的和的形式后可以化成一个分数。

  10.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。

  11.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)

  方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时,方程才成立。

  12.方程的解:使方程左右两边相等的未知数的值,叫做方程的解。如果两个方程的解相同,那么这两个方程叫做同解方程。

  13.方程的同解原理:

  (1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。

  (2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。

  14.解方程:解方程,求方程的解的过程叫做解方程。

  15.列方程解应用题的意义:用方程式去解答应用题求得应用题的`未知量的方法。

  16.列方程解答应用题的步骤:

  (1)弄清题意,确定未知数并用x表示;

  (2)找出题中的数量之间的相等关系;

  (3)列方程,解方程;

  (4)检查或验算,写出答案。

  17.列方程解应用题的方法:

  (1)综合法

  先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

  (2)分析法

  先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

  18.列方程解应用题的范围:

  小学范围内常用方程解的应用题:

  (1)一般应用题;

  (2)和倍、差倍问题;

  (3)几何形体的周长、面积、体积计算;

  (4)分数、百分数应用题;

  (5)比和比例应用题。

  19.平行四边形的面积公式:

  底×高(推导方法如图);如用“h”表示高,“a”表示底,“S”表示平行四边形面积,则S平行四边形=ah

  20.三角形面积公式:

  S△=1/2__ah(a是三角形的底,h是底所对应的高)

  21.梯形面积公式:

  (1)梯形的面积公式:(上底+下底)×高÷2.

  用字母表示:(a+b)×h÷2

  (2)另一计算公式:中位线×高

  用字母表示:l·h

  (3)对角线互相垂直的梯形:对角线×对角线÷2.

  人教版五年级数学上册重点知识点模板篇3

  1、a×b=c(a、b、c是不为0的整数),c是a和b的倍数,a和b是c的因数。

  找因数的方法:

  一个数的因数的个数是有限的,其中最小的因数是1,1的因数是它本身。

  一个数的倍数的个数是无限的,最小的倍数是它本身。

  2、自然数按是否是2的倍数来分:奇数偶数

  奇数:不是2的倍数

  偶数:是2的倍数(0也是偶数)

  最小的奇数是1,最小的偶数是0.

  个位上是0,2,4,6,8的数都是2的倍数。

  个位上是0或5的数,是5的倍数。

  一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  能同时是2、3、5的倍数的的两位数是90,最小的三位数是120。

  3、自然数按因数的个数来分:质数、合数、1.

  质数:有且只有两个因数,1和它本身

  合数:至少有三个因数,1、它本身、别的因数

  1:只有1个因数。“1”既不是质数,也不是合数。

  最小的质数是2,最小的合数是4。

  20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  4、分解质因数

  用短除法分解质因数(一个合数写成几个质数相乘的形式)

  5、公因数、公因数

  几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

  用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

  几个数的公因数只有1,就说这几个数互质。

  两数互质的特殊情况:

  ⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;

  ⑷2和所有奇数互质;⑸质数与比它小的合数互质;

  6、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

  用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

  如果两数是倍数关系时,那么较小的数就是它们的公因数;

  较大的数就是它们的最小公倍数。

  如果两数互质时,那么1就是它们的公因数

  它们的积就是它们的最小公倍数。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学做计算题型时需要注意什么

  (1)认真读题,仔细审题;

  (2)在计算一般算式时,得数的末尾也应该写出单位名称,但不打括号。例:32千克×4=128千克;

  (3)应用题在算式中要在得数后加括号,填上单位名称。

  例:一筐苹果重5千克,8箱苹果重多少千克?5×8=40(千克)

  人教版五年级数学上册重点知识点模板篇4

  统计与可能性

  1、平均数=总数量÷总份数

  2、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一般水平更合适。

  五年级上册数学重点知识点

  数学广角

  1、数不仅可以用来表示数量和顺序,还可以用来编码。

  2、邮政编码:由6位组成,前2位表示省(直辖市、自治区)

  054001

  前3位表示邮区

  前4位表示县(市)

  最后2位表示投递局

  3、身份证码:18位

  130521197803010019

  河北省邢台市邢台县出生日期顺序码校验码

  倒数第二位的数字用来表示性别,单数表示男,双数表示女。

  人教版五年级数学上册重点知识点模板篇5

  一、图形的变换

  图形变换的基本方式是平移、对称和旋转。

  1、轴对称:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  (1)学过的轴对称平面图形:长(正)方形、圆形、等腰三角形、等边三角形、等腰梯形……

  等腰三角形有1条对称轴,等边三角形有3条对称轴,长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,任意梯形和平行四边形不是轴对称图形。

  (2)圆有无数条对称轴。

  (3)对称点到对称轴的距离相等。

  (4)轴对称图形的特征和性质:

  ①对应点到对称轴的距离相等;

  ②对应点的连线与对称轴垂直;

  ③对称轴两边的图形大小、形状完全相同。

  对称图形包括轴对称图形和中心对称图形。平行四边形(除棱形)属于中心对称图形。

  2、旋转:在平面内,一个图形绕着一个顶点旋转一定的角度得到另一个图形的变化较做旋转,定点O叫做旋转中心,旋转的角度叫做旋转角,原图形上的一点旋转后成为的另一点成为对应点。

  (1)生活中的旋转:电风扇、车轮、纸风车

  (2)旋转要明确绕点,角度和方向。

  (3)长方形绕中点旋转180度与原来重合,正方形绕中点旋转90度与原来重合。等边三角形绕中点旋转120度与原来重合。

  旋转的性质:

  (1)图形的旋转是图形上的每一点在平面上绕某个固定点旋转固定角度的位置移动;

  (2)其中对应点到旋转中心的距离相等;

  (3)旋转前后图形的大小和形状没有改变;

  (4)两组对应点非别与旋转中心的连线所成的角相等,都等于旋转角;

  (5)旋转中心是不动的点。

  3、对称和旋转的画法:旋转要注意:顺时针、逆时针、度数

  二、因数和倍数

  1、整除:被除数、除数和商都是自然数,并且没有余数。

  整数与自然数的关系:整数包括自然数。

  2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。

  例:12是6的倍数,6是12的因数。

  (1)数a能被b整除,那么a就是b的倍数,b就是a的因数。因数和倍数是相互依存的,不能单独存在。

  (2)一个数的因数的个数是有限的,其中最小的因数是1,的因数是它本身。

  一个数的因数的求法:成对地按顺序找。

  (3)一个数的倍数的个数是无限的,最小的倍数是它本身。

  一个数的倍数的求法:依次乘以自然数。

  (4)2、3、5的倍数特征

  1)个位上是0,2,4,6,8的数都是2的倍数。

  2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。

  3)个位上是0或5的数,是5的倍数。

  4)能同时被2、3、5整除(也就是2、3、5的倍数)的的两位数是90,最小的三位数是120。

  同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。

  5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。

  3、自然数按能不能被2整除来分:奇数、偶数。

  自奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。

  然

  数偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。

  最小的奇数是1,最小的偶数是0.

  关系:奇数+、-偶数=奇数奇数+、-奇数=偶数偶数+、-偶数=偶数。

  5、自然数按因数的个数来分:质数、合数、1三类.

  质数(或素数):只有1和它本身两个因数。

  合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

  1:只有1个因数。“1”既不是质数,也不是合数。

  最小的质数是2,最小的合数是4,连续的两个质数是2、3。

  每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

  20以内的质数:有8个(2、3、5、7、11、13、17、19)

  100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、

  43、47、53、59、61、67、71、73、79、83、89、97

  100以内找质数、合数的技巧:

  看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

  关系:奇数×奇数=奇数质数×质数=合数

  6、、最小

  A的最小因数是:1; A的因数是:A; A的最小倍数是:A;

  最小的奇数是:1;最小的偶数是:0;最小的质数是:2;最小的合数是:4;

  最小的自然数是:0;

  7、分解质因数:把一个合数分解成多个质数相乘的形式。

  用短除法分解质因数(一个合数写成几个质数相乘的形式)。

  比如:30分解质因数是:(30=2×3×5)

  8、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8

  两数互质的特殊情况:

  ⑴1和任何自然数互质;⑵相邻两个自然数互质; ⑶两个质数一定互质;

  ⑷2和所有奇数互质; ⑸质数与比它小的合数互质;

  9、公因数、公因数

  几个数公有的因数叫这些数的公因数。其中的那个就叫它们的公因数。

  用短除法求两个数或三个数的公因数(除到互质为止,把所有的除数连乘起来)

  几个数的公因数只有1,就说这几个数互质。

  如果两数是倍数关系时,那么较小的数就是它们的公因数。

  如果两数互质时,那么1就是它们的公因数。

  10、公倍数、最小公倍数

  几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。

  用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)

  用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)

  如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。

  如果两数互质时,那么它们的积就是它们的最小公倍数。

  11、求公因数和最小公倍数方法

  用12和16来举例

  1、求法一:(列举求同法)

  公因数的求法:

  12的因数有:1、12、2、6、3、4

  16的因数有:1、16、2、8、4

  公因数是4

  最小公倍数的求法:

  12的倍数有:12、24、36、48、…

  16的倍数有:16、32、48、…

  最小公倍数是48

  2、求法二:(分解质因数法)

  12=2×2×3

  16=2×2×2×2

  公因数是:2×2=4 (相同乘)

  最小公倍数是:2×2 × 3×2×2= 48 (相同乘×不同乘)

  三长方体和正方体

  1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。

  长方体特点:

  (1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

  (2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

  2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。

  正方体特点:

  (1)正方体有12条棱,它们的长度都相等。

  (2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

  (3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

  相同点

  不同点

  面

  棱

  长方体

  都有6个面,

  12条棱,

  8个顶点。

  6个面都是长方形。

  (有可能有两个相对的面是正方形)。

  相对的棱的长度都相等

  正方体

  6个面都是正方形。

  12条棱都相等。

  3、长方体、正方体有关棱长计算公式:

  长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4 L=(a+b+h)×4

  长=棱长总和÷4-宽-高a=L÷4-b-h

  宽=棱长总和÷4-长-高b=L÷4-a-h

  高=棱长总和÷4-长-宽h=L÷4-a-b

  正方体的棱长总和=棱长×12 L=a×12

  正方体的棱长=棱长总和÷12 a=L÷12

  4、长方体或正方体6个面和总面积叫做它的表面积。

  长方体的表面积=(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)

  无底(或无盖)长方体表面积=长×宽+(长×高+宽×高)×2

  S=2(ab+ah+bh)-ab S=2(ah+bh)+ab

  无底又无盖长方体表面积=(长×高+宽×高)×2 S=2(ah+bh)贴墙纸

  正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2

  生活实际:

  油箱、罐头盒等都是6个面游泳池、鱼缸等都只有5个面水管、烟囱等都只有4个面。

  注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)

  注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。

  (如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。

  5、物体所占空间的大小叫做物体的体积。

  长方体的体积=长×宽×高V=abh

  长=体积÷宽÷高a=V÷b÷h

  宽=体积÷长÷高b=V÷a÷h

  高=体积÷长÷宽h= V÷a÷b

  正方体的体积=棱长×棱长×棱长

  V=a×a×a= a3读作“a的立方”表示3个a相乘,(即a·a·a)

  长方体或正方体底面的面积叫做底面积。

  长方体(或正方体)的体积=底面积×高用字母表示:V=S h

  (横截面积相当于底面积,长相当于高)。

  注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。

  6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。

  固体一般就用体积单位,计量液体的体积,如水、油等。

  常用的容积单位有升和毫升也可以写成L和ml。

  1升=1立方分米1毫升=1立方厘米1升=1000毫升

  (1 L = 1 dm3 1 ml = 1 cm3)

  长方体或正方体容器容积的计算方法,跟体积的计算方法相同。

  但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)

  注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。

  (如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。

  _状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。

  排水法的公式:V物体=V现在-V原来

  也可以V物体=S×(h现在- h原来)

  V物体=S×h升高

  8、【体积单位换算】

  率

  大单位转换成小单位

  ÷进率

  小单位转换成大单位

  进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)

  1立方分米=1000立方厘米=1升=1000毫升

  1立方厘米=1毫升

  1平方米=100平方分米=10000平方厘米

  1平方千米=100公顷=1000000平方米

  注意:长方体与正方体关系

  把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。

  重量单位进率,时间单位进率,长度单位进率

  率

  【单位换算】

  大单位小单位

  ÷进率

  小单位大单位

  长度单位:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米

  1米=10分米=100厘米=1000毫米(相邻单位进率10)

  面积单位:1平方千米=100公顷1平方米=100平方分米

  1平方分米=100平方厘米1公顷=10000平方米(平方相邻单位进率100)

  质量单位:1吨=1000千克1千克=1000克

  人民币:1元=10角1角=10分1元=100分

  四分数的意义和性质

  1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。

  2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)

  3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

  4、分数与除法

  A÷B=(B≠0,除数不能为0,分母也不能够为0)例如:4÷5=

  5、真分数和假分数、带分数

  1、真分数:分子比分母小的分数叫真分数。真分数<1。

  2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1

  3、带分数:带分数由整数和真分数组成的分数。带分数>1.

  4、真分数<1≤假分数真分数<1<带分数

  6、假分数与整数、带分数的互化

  (1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子,如:

  =10÷5=2 =21÷5=4

  (2)整数化为假分数,用整数乘以分母得分子如:

  2= 2×4=8 (8作分子)

  (3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:

  5= 5×5+1=26

  (4)1等于任何分子和分母相同的分数。如:

  1=====…==…

  7、分数的基本性质:

  分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。

  8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。

  一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。

  9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

  10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。如:

  11、分数和小数的互化

  (1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……

  如:0.3= 0.03= 0.003=

  (2)分数化为小数:

  方法一:把分数化为分母是10、100、1000……

  如:=0.3 ==0.6 ==0.25

  方法二:用分子÷分母

  如:=3÷4=0.75

  (3)带分数化为小数:

  先把整数后的分数化为小数,再加上整数

  如:2=2+0.3=2.3

  12、比分数的大小:分母相同,分子大,分数就大;

  分子相同,分母小,分数才大。

  分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。

  13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。

  14、两个数互质的特殊判断方法:

  ① 1和任何大于1的自然数互质。

  ② 2和任何奇数都是互质数。

  ③相邻的两个自然数是互质数。

  ④相邻的两个奇数互质。

  ⑤不相同的两个质数互质。

  ⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。

  15、求公因数的方法:

  ①倍数关系:公因数就是较小数。

  ②互质关系:公因数就是1

  ③一般关系:从大到小看较小数的因数是否是较大数的因数。

  16、分数知识图解:

  分数的产生

  分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份。

  分数与除法:分子(被除数),分母(除数),分数值(商)。

  真分数真分数小于1

  真分数与假分数假分数假分数大于1或等于1

  带分(整数部分和真分数)

  假分数化带分数、整数(分子除以分母,商作整数部分,余数作分子)

  分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,

  分数的基本性质分数的大小不变。

  通分、通分子:化成分母不同,大小不变的分数(通分)

  公因数

  约分求公因数

  最简分数分子分母互质的分数(最简真分数、最简假分数)

  约分及其方法

  最小公倍数

  通分求最小公倍数

  分数比大小(通分、通分子、化成小数)

  通分及其方法

  小数化分数小数化成分母是10、100、1000的分数再化简

  分数和小数的互化

  分数化小数分子除以分母,除不尽的取近似值

  五分数的加法和减法

  (1)同分母分数加、减法(分母不变,分子相加减)

  1、分数数的加法和减法(2)异分母分数加、减法(通分后再加减)

  (3)分数加减混合运算:同整数。

  (4)结果要是最简分数

  2、带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。

  附:具体解释

  (一)同分母分数加、减法

  1、同分母分数加、减法:

  同分母分数相加、减,分母不变,只把分子相加减。

  2、计算的结果,能约分的要约成最简分数。

  (二)异分母分数加、减法

  1、分母不同,也就是分数单位不同,不能直接相加、减。

  2、异分母分数的加减法:

  异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。

  (三)分数加减混合运算

  1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。

  在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。

  2、整数加法的交换律、结合律对分数加法同样适用。

  六统计与数学广角

  众数一组数据中出现次数最多的数叫众数。

  众数能够反映一组数据的集中情况。

  统计在一组数据中,众数可能不止一个,也可能没有众数。

  复式折线统计图

  综合应用打电话的方案

  1、众数:一组数据中出现次数最多的一个数或几个数,就是这组数据的众数。

  众数能够反映一组数据的集中情况。

  在一组数据中,众数可能不止一个,也可能没有众数。

  2、中位数:(1)按大小排列;

  (2)如果数据的个数是单数,那么最中间的那个数就是中位数;

  (3)如果数据的个数是双数,那么最中间的那两个数的平均数就是中位数。

  3、平均数的求法:总数÷总份数=平均数

  4、一组数据的一般水平:

  (1)当一组数据中没有偏大偏小的数,也没有个别数据多次出现,用平均数表示一般水平。

  (2)当一组数据中有偏大或偏小的数时,用中位数来表示一般水平。

  (3)当一组数据中有个别数据多次出现,就用众数来表示一般水平。

  4、平均数、中位数和众数的联系与区别:

  ①平均数:

  一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

  容易受极端数据的影响,表示一组数据的平均情况。

  ②中位数:

  将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

  它不受极端数据的影响,表示一组数据的一般情况。

  ③众数:

  在一组数据中出现次数最多的数叫做这组数据的众数。

  它不受极端数据的影响,表示一组数据的集中情况。

  5、统计图:我们学过——条形统计图、复式折线统计图。

  条形统计图优点:条形统计图能形象地反映出数量的多少。

  折线统计图优点:折线统计图不仅能表示出数量的多少,还能反映出数量的变化情况。

  注:①画图时注意:一“点”(描点)、二“连”(连线)三“标”(标数据)。

  ②要用不同的线段分别连接两组数据中的数。

  6、打电话:规律——人人不闲着,每人都在传。(技巧:已知人数依次× 2)

  (1)逐个法:所需时间最多。

  (2)分组法:相对节约时间。

  (3)同时进行法:最节约时间。

  七数学广角

  用天平找次品规律:

  1、把所有物品尽可能平均地分成3份,(如余1则放入到最后一份中;如余2则分别放入到前两份中),保证找出次品而且称的次数一定最少。

  2、数目与测试的次数的关系:2~3个物体,保证能找出次品需要测的次数是1次

  4~9个物体,保证能找出次品需要测的次数是2次

  10~27个物体,保证能找出次品需要测的次数是3次

  28~81个物体,保证能找出次品需要测的次数是4次

  82~243个物体,保证能找出次品需要测的次数是5次

  244~729个物体,保证能找出次品需要测的次数是6次

  3、找次品规律

  1 2 3 4 5 …次数

  3 3×3 3×3×3 3×3×3×3 3×3×3×3×3 …

  3 9 27 81 243 …次品个数

  人教版五年级数学上册重点知识点模板篇6

  第一单元小数乘法

  1、小数乘整数(P2、3):意义--求几个相同加数的和的简便运算。

  如:1.53 表示 1.5 的 3 倍是多少或 3 个 1.5 的和的简便运算。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中 一共有几位小数,就从积的右边起数出几位点上小数点。

  2、小数乘小数(P4、5):意义--就是求这个数的几分之几是多少。

  如:1.50.8 就是求 1.5 的十分之八是多少。

  1.51.8 就是求 1.5 的 1.8 倍是多少。

  计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数一共有几位小数,就从积的右边起数出几位点上小数点。

  注意:计算结果中,小数部分末尾的 0 要去掉,把小数化简;小数部分位数不够时,要用 0 占位。

  3、规律(1)(P9):一个数(0 除外)乘大于 1 的数,积比原来的数大;

  一个数(0 除外)乘小于 1 的数,积比原来的数小。

  4、求近似数的方法一般有三种:(P10)

  ⑴四舍五入法;⑵进一法;⑶去尾法

  5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

  6、(P11)小数四则运算顺序跟整数是一样的。

  7、运算定律和性质:

  加法:加法交换律: a+b=b+a 加法结合律:(a+b)+c=a+(b+c)

  减法:减法性质: a-b-c=a-(b+c) a-(b-c)=a-b+c

  乘法:乘法交换律:ab=ba

  乘法结合律:(ab)c=a(bc)

  乘法分配律:(a+b)c=ac+bc 【(a-b)c=ac-bc】

  除法:除法性质: abc=a(bc)

  第二单元小数除法

  8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

  如:0.60.3 表示已知两个因数的积 0.6 与其中的一个因数 0.3,求另一个因数的运算。

  9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。商的小数点要和被除数的小数点对齐。整数部分不够除,商 0,点上小数点。如果有余数,要添 0 再除。

  10、(P21)除数是小数的除法的计算方法: 先将除数和被除数扩大相同的倍数,使除数变成整数,再按除数是整数的小数除法的法则进行计算。

  注意:如果被除数的位数不够,在被除数的末尾用 0 补足。

  11、(P23)在实际应用中,小数除法所得的商也可以根据需要用四舍五入法保留一定的小数位数 求出商的近似数。

  12、(P24、25)除法中的变化规律: ①商不变性质:被除数和除数同时扩大或缩小相同的倍数( 0除外),商不变。②除数不变,被除数扩大,商随着扩大。 被除数不变,除数缩小,商扩大。 ③被除数不变,除数缩小,商扩大。

  13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

  循环节:一个循环小数的小数部分,依次不断重复出现的数字。如 6.3232 的循环节是 32.

  14、小数部分的位数是有限的小数,叫做有限小数。小数部分的位数是无 限的小数,叫做无限小数。

  第三单元观察物体

  15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

  第四单元简易方程

  16、(P45)在含有字母的式子里,字母中间的乘号可以记作,也可 以省略不写。

  加号、减号除号以及数与数之间的乘号不能省略。

  17、aa 可以写作 aa 或 a ,a 读作 a 的平方。 2a 表示 a+a

  18、方程:含有未知数的等式称为方程。

  使方程左右两边相等的未知数的值,叫做方程的解。

  求方程的解的过程叫做解方程。

  19、解方程原理:天平平衡。

  等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。、

  20、 个数量关系式:加法:和=加数+加数 一个加数=和-另一个加数

  减法:差=被减数-减数 被减数=差+减数 减数=被减数-差

  乘法:积=因数因数 一个因数=积另一个因数

  除法:商=被除数除数 被除数=商除数 除数=被除数商

  21、所有的方程都是等式,但等式不一定都是方程。

  22、方程的检验过程:方程左边=

  23、方程的解是一个数;

  解方程式一个计算过程。=方程右边

  所以,X=是方程的解。

  第五单元多边形的面积

  23、公式:

  长方形:周长=(长+宽)2--【长=周长2-宽;宽= 周长 2-长】 字母公式:C=(a+b)2

  面积= 面积=长宽 字母公式:S=ab

  正方形:周长=边长4 字母公式:C=4a

  平行四边形的面积=底高 字母公式: S=ah

  三角形的面积=底高2 --【底=面积2高=面积2底】 字母公式: S=ah2

  梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2

  【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】

  24、平行四边形面积公式推导:剪拼、平移

  25、三角形面积公式推导:旋转

  平行四边形可以转化成一个长方形;

  两个完全一样的三角形可以拼成一个平行四边形,

  长方形的长相当于平行四边形的底;

  平行四边形的底相当于三角形的底;

  长方形的宽相当于平行四边形的高;

  平行四边形的高相当于三角形的高;

  长方形的面积等于平行四边形的面积,

  平行四边形的`面积等于三角形面积的 2 倍,

  因为长方形面积=长宽,所以平行四边形面积=底高。

  因为平行四边形面积= 因为平行四边形面积=底高,所以三角形面积=底高2

  26、梯形面积公式推导:旋转

  27、三角形、梯形的第二种推导方法老师已讲,自己看书

  两个完全一样的梯形可以拼成一个平行四边形, 知道就行。

  平行四边形的底相当于梯形的上下底之和;

  平行四边形的高相当于梯形的高;

  平行四边形面积等于梯形面积的 2 倍,

  因为平行四边形面积=底高,所以梯形面积=(上底+下底)高2

  28、等底等高的平行四边形面积相等;

  等底等高的三角形面积相等;

  等底等高的平行四边形面积是三角形面积的 2 倍。

  29、长方形框架拉成平行四边形,周长不变,面积变小。

  30、组合图形:转化成已学的简单图形,通过加、减进行计算。

  第六单元统计与可能性

  31、平均数=总数量总份数

  32、中位数的优点是不受偏大或偏小数据的影响,用它代表全体数据的一 般水平更合适。

  第七单元数学广角

  33、数不仅可以用来表示数量和顺序,还可以用来编码。

  34、邮政编码:由 6 位组成,前 2 位表示省(直辖市、自治区)

  0 5 4 0 0 1

  前 3 位表示邮区

  前 4 位表示县(市)

  最后 2 位表示投递局

  35、身份证码: 18 位

  1 3 0 5 2 1 1 9 7 8 0 3 0 1 0 0 1 9

  人教版五年级数学上册重点知识点模板篇7

  1、表示相等关系的式子叫做等式。

  2、含有未知数的等式是方程。

  3、方程一定是等式;等式不一定是方程。等式>方程

  4、等式两边同时加上或减去同一个数,所得结果仍然是等式。这是等式的性质。

  等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。这也是等式的性质。

  5、求方程中未知数的过程,叫做解方程。

  解方程时常用的关系式:

  一个加数=和-另一个加数减数=被减数-差被减数=减数+差

  一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数

  注意:解完方程,要养成检验的好习惯。

  6、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数

  7、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)

  8、列方程解应用题的思路:

  A、审题并弄懂题目的已知条件和所求问题。

  B、理清题目的等量关系。

  C、设未知数,一般是把所求的数用X表示。

  D、根据等量关系列出方程E、解方程F、检验G、作答。

  人教版五年级数学上册重点知识点模板篇8

  整除的算式的特征:

  1、除数、被除数都是自然数,且除数不为0。

  2、被除数除以除数,商是自然数而没有余数。

  例:15能被5整除,我们就说,15是5的

  倍数,5是15的因数。

  知识点一:因数

  问题一:一个长方形,它的面积是12平方厘米,如果长方形的长和宽都是整数,请同学们猜一猜这个长方形的长和宽各是多少?

  所以12的因数有:

  注意:1、在说因数(或倍数)时,必须说明谁是谁的因数(或倍数)。不能单独说谁是因数(或倍数)。2、因数和倍数不能单独存在。

  例1 18的因数有那些?

  方法一:想18可以有哪两个数相乘得到18=1×18 18=2×9 18=3×6

  方法二:根据整除的意义得到

  18÷1=18 18÷2=9 18÷3=6

  所以18的因数有:

  表示方法:

  1、列举法︰12的因数有:1,2,3,4,6,12

  2、用集合表示︰

  练习1:30的因数有哪些?36呢?

  30的因数有:

  36的因数有:

  观察:18的最小因数是(),的因数是()

  30的最小因数是(),的因数是)

  36的最小因数是(),的因数是()

  一个数的因数的个数是有限的,一个数的最小因数是(),因数是()

  你要知道:

  (1)1的因数只有1,的因数和最小的因数都是它本身。

  (2)除1以外的整数,至少有两个因数。

  (3)任何自然数都有因数1。

  知识点二:倍数

  问题二:2的倍数有哪些?

  2的倍数有:2,4,6,8 …

  例1、小蜗牛找倍数(找出3的倍数)。

  练习3、5的倍数有哪些?7的倍数呢?

  5的倍数:

  7的倍数:

  一个数的倍数的个数是(),一个数的最小的倍数是(),()的倍数。

  用字母表示因数与倍数的关系:a — b = c(a、b、c都是不为0的整数)a、b都是c的因数,c是a和b的倍数。因数和倍数是相互依存的。

  说一说:在0、3、4、7、15、16、77、31、62中择两个数,说一说谁是谁的因数?谁是谁的倍数?

  1、根据算式:4×8=32

  说一说,谁是谁的因数?谁是的倍数?

  2、根据算式:63÷7=9

  说一说,谁是谁的因数?谁是的倍数?

  3、判断:1.2÷0.2=6我们能说0.2和6是1.2的因数;1.2是0.2的倍数,也是6的倍数吗?为什么?

  知识点三:质数和合数

  1、自然数按因数的个数来分:质数、合数、1、0四类。

  (1)质数(或素数):只有1和它本身两个因数。

  (2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

  (3)1:只有1个因数。“1”既不是质数,也不是合数。

  注:

  ①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

  ②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

  ③ 20以内的质数:有8个()

  ④ 100以内的质数有25个:()

  关系:奇数×奇数=奇数质数×质数=合数

  2、常见、最小

  A的最小因数是:1;最小的奇数是:1;

  A的因数是:本身;最小的偶数是:0;

  A的最小倍数是:本身;最小的质数是:2;

  最小的自然数是:0;最小的合数是:4;

  3、分解质因数:把一个合数分解成多个质数相乘的形式。树状图

  例:

  分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。把36分解质因数是:36=2×2×3×3

  4、用短除法分解质因数(一个合数写成几个质数相乘的形式)。例:

  分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。具体步骤是:

  5、互质数:公因数只有1的两个数,叫做互质数。

  两个质数的互质数:5和7

  两个合数的互质数:8和9

  一质一合的互质数:7和8

  6、两数互质的特殊情况:

  ⑴1和任何自然数互质;

  ⑵相邻两个自然数互质;

  ⑶两个质数一定互质;⑷2和所有奇数互质;

  ⑸质数与比它小的合数互质;

  三、经验之谈:

  书写分解质因数的结果时不能把质因数相乘写在等号左边,把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;

  短除法是除法一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数

  图形的变换

  1、轴对称图形:把一个图形沿着某一条直线对折,两边能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴。

  2、成轴对称图形的特征和性质:①对称点到对称轴的距离相等;②对称点的连线与对称轴垂直;③对称轴两边的图形大小形状完全相同。

  3、物体旋转时应抓住三点:①旋转中心;②旋转方向;③旋转角度。旋转只改变物体的位置,不改变物体的形状、大小。

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章