爱学习,爱生活,会学习,会生活,人生有百学网更精彩!
爱学习 | 爱生活

数学初中中考复习知识点归纳整理

发布于:百学网 2023-08-22

数学初中中考复习知识点归纳整理

  数学初中中考复习知识点归纳整理(8篇)

  还在为没有系统的数学初中中考复习知识点而发愁吗?在平平淡淡的学习中,很多人都经常追着老师们要知识点吧,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。下面是小编给大家整理的数学初中中考复习知识点归纳整理,仅供参考希望能帮助到大家。

  数学初中中考复习知识点归纳整理篇1

  1、变量与常量

  在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

  一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数。

  2、函数解析式

  用来表示函数关系的`数学式子叫做函数解析式或函数关系式。

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

  3、函数的三种表示法及其优缺点

  (1)解析法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

  (2)列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  (3)图像法

  用图像表示函数关系的方法叫做图像法。

  4、由函数解析式画其图像的一般步骤

  (1)列表:列表给出自变量与函数的一些对应值。

  (2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

  (3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  数学初中中考复习知识点归纳整理篇2

  易错点1:对弧、弦、圆周角等概念理解不深刻,特别是弦所对的圆周角有两种情况要特别注意,两条弦之间的距离也要考虑两种情况。(选题最后一题考)

  易错点2:对垂径定理的理解不够,不会正确添加辅助线运用直角三角形进行解题。

  易错点3:对切线的定义及性质理解不深,不能准确的利用切线的性质进行解题以及对切线的判定方法两种方法使用不熟练。

  易错点4:考查圆与圆的'位置关系时,相切有内切和外切两种情况,包括相交也存在两圆圆心在公共弦同侧和异侧两种情况,学生很容易忽视其中的一种情况。(25题分类讨论)

  易错点5:与圆有关的位置关系把握好d与R和R+r,R-r之间的关系以及应用上述的方法求解。

  易错点6:圆周角定理是重点,同弧(等弧)所对的圆周角相等,直径所对的圆周角是直角。直角的圆周角所对的弦是直径,一条弧所对的圆周角等于它所对的圆心角的一半。

  易错点7:几个公式一定要牢记:三角形、平行四边形、菱形、矩形、正方形、梯形、圆的面积公式,圆周长公式,弧长,扇形面积,圆锥的侧面积以及全面积以及弧长与底面周长,母线长与扇形的半径之间的转化关系。

  数学初中中考复习知识点归纳整理篇3

  第1课 实数的有关概念

  考查重点:

  1、 有理数、无理数、实数、非负数概念;

  2、相反数、倒数、数的绝对值概念;

  3、在已知中,以非负数a2、|a|、a (a≥0)之和为零作为条件,解决有关问题。

  实数的有关概念

  (1)实数的组成

  (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一不可),

  实数与数轴上的点是一一对应的。 数轴上任一点对应的数总大于这个点左边的点对应的`数,

  (3)相反数: 实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反效是零)、

  从数轴上看,互为相反数的两个数所对应的点关于原点对称、

  (4)绝对值

  从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离

  (5)倒数: 实数a(a≠0)的倒数是(乘积为1的两个数,叫做互为倒数);零没有倒数、

  第2课 实数的运算

  考查重点:

  1、 考查近似数、有效数字、科学计算法;

  2、 考查实数的运算;

  3、 计算器的使用。

  实数的运算

  (1)加法: 同号两数相加,取原来的符号,并把绝对值相加;

  异号两数相加。取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;

  任何数与零相加等于原数。

  (2)减法 a-b=a+(-b)

  (3)乘法: 两数相乘,同号得正,异号得负,并把绝对值相乘;零乘以任何数都得零、

  (4)除法

  (5)乘方

  (6)开方 如果x2=a且x≥0,那么 =x; 如果x3=a,那么

  在同一个式于里,先乘方、开方,然后乘、除,最后加、减、有括号时,先算括号里面、

  实数的运算律

  (1)加法交换律 a+b=b+a

  (2)加法结合律 (a+b)+c=a+(b+c)

  (3)乘法交换律 ab=ba、

  (4)乘法结合律 (ab)c=a(bc)

  (5)分配律 a(b+c)=ab+ac

  其中a、b、c表示任意实数、运用运算律有时可使运算简便、

  数学初中中考复习知识点归纳整理篇4

  对某些知识点概念理解不清,很容易造成做题时拿不定主意,模棱两可而造成错误。在中考数学的复习中怎么有效改善这种问题呢?

  自己应该先分析自己。自己对自己最了解,知道自己的学习中哪个环节最薄弱最需要帮助,只要把这个环节打通了剩下的工作就可事半功倍了。

  其次,制定学习计划。包括时间计划、学习内容和形式等等。因为中学生已经经过了多年的学习过程,有些问题累积的.过多,需要系统的来解决,不能只是头疼医头脚疼医脚,只是解决了表面问题,真到综合训练和考试的时候,问题依然会存在。

  最后,要从思想上下定决心,努力实施。解决自己沉积的问题,不是一朝一夕的事情,需要有恒心、耐心,切忌耍小聪明,敷衍了事。无论采取什么方案,都要扎扎实实的去做。

  数学初中中考复习知识点归纳整理篇5

  三角形的重心

  已知:△ABC中,D为BC中点,E为AC中点,AD与BE交于O,CO延长线交AB于F。求证:F为AB中点。

  证明:根据燕尾定理,S(△AOB)=S(△AOC),又S(△AOB)=S(△BOC),∴S(△AOC)=S(△BOC),再应用燕尾定理即得AF=BF,命题得证。

  重心的`几条性质:

  1.重心和三角形3个顶点组成的3个三角形面积相等。

  2.重心到三角形3个顶点距离的平方和最小。

  3.在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((x1+x2+x3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(x1+x2+x3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(Z1+Z2+Z3)/3

  4.重心到顶点的距离与重心到对边中点的距离之比为2:1。

  5.重心是三角形内到三边距离之积最大的点。

  如果用塞瓦定理证,则极易证三条中线交于一点。

  数学初中中考复习知识点归纳整理篇6

  数轴特点:一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  数轴上点与有理数关系:每一个有理数都可以用数轴上的一个点来表示;

  但数轴上的点不都表示有理数。

  注意:不能出现相同长度表示的不等的量。数轴两端不能画点。

  数学初中中考复习知识点归纳整理篇7

  同位角知识:两条直线a,b被第三条直线c所截会出现“三线八角”。

  同位角的特征识别:

  1.在截线的同旁;

  2.在被截两直线的同方向;

  3.同位角截取图呈“F”型。

  平行线的性质与判定

  平行线的性质:两直线平行,同位角相等。

  知识归纳:平行线的判定:同位角相等,两直线平行。

  数学初中中考复习知识点归纳整理篇8

  20__年中考数学知识点:有理数

  一、正数和负数

  正数和负数的概念

  负数:比0小的数;正数:比0大的数。

  0既不是正数,也不是负数

  ☆注意:字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。强调:带正号的数不一定是正数,带负号的数不一定是负数。

  具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量。习惯把“前进、上升、收入、零上温度”等规定为正,“后退、下降、支出、零下温度”等规定为负.

  二、有理数

  有理数的概念

  (1)正整数、0、负整数统称为整数(0和正整数统称为自然数)

  (2)正分数和负分数统称为分数

  (3)整数和分数统称有理数

  ☆注意:①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。

  数轴

  (1)数轴的概念:规定了原点,正方向,单位长度的直线叫做数轴。

  注意:数轴是一条向两端无限延伸的直线;

  原点、正方向、单位长度是数轴的三要素,三者缺一不可;

  数轴的三要素都是根据实际需要规定的,同一数轴上的单位长度要统一;

  (2)数轴上的点与有理数的关系

  所有的有理数都可以用数轴上唯一的点来表示,正有理数可用原点正方向的点表示,负有理数可用原点负方向的点表示,0用原点表示。

  相反数

  (1)只有符号不同的两个数叫做互为相反数;0的相反数是0;任何一个有理数都有相反数

  (2)互为相反数的两数的和为0,即:若a、b互为相反数,则a+b=0;互为相反数的两个点在数轴上分别位于原点两侧,并且与原点的距离相等。

  (3)在一个数的前面加上负号“-”,就得到了这个数的相反数。a的相反数是-a。

  (4)多重符号的化简

  多重符号的'化简规律:“+”号的个数不影响化简的结果,可以直接省略;“-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。

  绝对值

  (1)绝对值的几何定义:数轴上表示数a的点与原点的距离,叫做a的绝对值,记作:|a|

  (2)求绝对值:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是它的相反数;可用字母表示为:①如果a>0,那么|a|=a;②如果a<0,那么|a|=-a;③如果a=0,那么|a|=0。

  可归纳为①:a≥0时,|a|=a(非负数的绝对值等于本身;绝对值等于本身的数是非负数。)②a≤0时,|a|=-a(非正数的绝对值等于其相反数;绝对值等于其相反数的数是非正数。)

  (3)若几个数的绝对值的和等于0,则这几个数就同时为0。即|a|+|b|=0,则a=0且b=0。(非负数的常用性质:若几个非负数的和为0,则有且只有这几个非负数同时为0)

  有理数比大小

  (1)利用数轴表示两数大小

  在以向右为正方向的数轴上数的大小比较,右边的数总比左边的数大;

  正数都大于0,负数都小于0,正数大于负数;

  (2)数轴上特殊的最大(小)数

  最小的自然数是0,无最大的自然数;

  最小的正整数是1,无最大的正整数;

  最大的负整数是-1,无最小的负整数

  (3)利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;

  (4)大数-小数>0,小数-大数<0。

  三、有理数的加、减法运算

  有理数加法

  (1)同号两数相加,取相同符号,并且把绝对值相加

  (2)异号两数相加,取绝对值大的数的符号,并且用较大的绝对值减去较小的绝对值

  (3)互为相反数的两数相加得0

  ☆

  加法交换律:两个有理数相加,交换加数的位置,和不变,a+b=b+a

  加法结合律:三个有理数相加,先把前两个数相加,再把结果与第三个数相加;或者先把后两个数相加,再把结果与第一个数相加,和不变,(a+b)+c=a+(b+c)

  ☆

  (1)同号结合相加(正数+正数、负数+负数)

  (2)互为相反数的两数结合相加(把相加结果为零的数结合相加)

  (3)几个分数相加,将同分母的先结合相加

  (4)将求和后为整数的数先结合相加

  (5)几个带分数相加,可将整数部分与分数部分分别结合相加

  ☆在一个求和的式子中,通常可以把“+”省略不写,同时去掉加数的括号

  有理数的减法

  根据相反数的定义,减去一个数,等于加上这个数的相反数,有理数的减法可以转化为加法进行计算。引入相反数的之后,有理数的加减混合运算可以统一为加法运算。

  四、有理数的乘、除法运算

  有理数乘法

  (1)异号两数相乘得负数,并把绝对值相乘;同号两数相乘得正数,并把绝对值相乘。

  (2)任何数与0相乘都得0

  ☆有理数的乘法运算定律

  乘法交换律:两个有理数相乘,交换因数的位置,它们的积不变。a×b=b×a

  乘法结合律:三个数相乘,先把前两个数相乘,再和另外一个数相乘,或先把后两个数相乘,再和另外一个数相乘,积不变。a×b×c=a×(b×c)

  乘法分配律:两个数的和(差)同一个数相乘,可以先把两个加数(减数)分别同这个数相乘,再把两个积相加(减),积不变。a×(b+c)=a×b+a×c

  倒数

  (1)乘积为1的两个数互为倒数;注意:0没有倒数;

  (2)若a,b互为倒数,则ab=1;

  (3)求倒数:求一个数的倒数就是用1去除以这个数。

  ①求假分数或真分数的倒数,只要把这个分数的分子、分母颠倒位置即可;

  ②求带分数的倒数时,先把带分数化为假分数,再把分子、分母颠倒位置;

  ③正数的倒数是正数,负数的倒数是负数。(求一个数的倒数,不改变这个数的性质);

  ④倒数等于它本身的数是1或-1;

  有理数除法

  (1)除以一个不等0的数,等于乘以这个数的倒数。

  (2)两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0

  有理数的加减乘除混合运算

  (1)乘除混合运算往往先将除法化成乘法,然后确定积的符号,最后求出结果。

  (2)有理数的加减乘除混合运算,如果有括号先计算括号里的,如果无括则按照‘先乘除,后加减’的顺序进行,同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  五、有理数乘方

  乘方的概念:求n个相同因数的乘积的运算,叫做乘方,乘方的结果叫做幂。乘方中,相同的因式叫做底数,相同因式的个数叫做指数。

  记作:an,在an中,a叫做底数,n叫做指数,an叫做幂

  乘方的性质

  (1)负数的奇次幂是负数,负数的偶次幂的正数。

  (2)正数的任何次幂都是正数,0的任何正整数次幂都是0。

  (3)互为相反数的两个数的奇数次幂仍互为相反数,偶数次幂相等。

  (4)任何一个数的偶数次幂都是非负数。

  有理数的混合运算

  做有理数的混合运算时,应注意以下运算顺序:

  (1)先乘方,再乘除,最后加减;

  (2)同级运算中,按前后顺序从左到右依次运算,谁在前先算谁。

  (3)如有括号,先做括号内的运算,按小括号,中括号,大括号依次进行。

  科学记数法

  把一个绝对值大于10的数记成a×10n的形式,其中a是整数数位只有一位的数(即1≤|a|<10,n是正整数),这种记数法叫科学记数法。

  方法:①a的确定:把原数的小数点向左移动,使它的整数位数为1,数的正负号保持不变;②n=原数的整数数位-1。

本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢

- END -
  • 相关文章