学校中考数学必背复习知识点归纳
想要一份整理好的中考数学知识点吗?在平平淡淡的学习中,说起知识点,应该没有人不熟悉吧?知识点也可以通俗的理解为重要的内容。下面是小编给大家整理的学校中考数学必背复习知识点归纳,仅供参考希望能帮助到大家。
学校中考数学必背复习知识点归纳篇1
1、矩形的概念
有一个角是直角的平行四边形叫做矩形。
2、矩形的性质
(1)具有平行四边形的一切性质(2)矩形的四个角都是直角
(3)矩形的对角线相等(4)矩形是轴对称图形
3、矩形的`判定
(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形
(3)定理2:对角线相等的平行四边形是矩形
4、矩形的面积S矩形=长×宽=ab
二次函数概念
二次函数的概念:一般地,形如ax^2+bx+c = 0的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数a≠0,而b,c可以为零.二次函数的定义域是全体实数.
二次函数图像与性质口诀
二次函数抛物线,图象对称是关键;
开口、顶点和交点,它们确定图象限;
学校中考数学必背复习知识点归纳篇2
1、含有未知数的等式叫方程,使方程左右两边的值相等的未知数的值叫方程的解。
2、方程含有两个未知数,并且含有未知数的项的次数都是1,这样的方程叫二元一次方程,二元一次方程的一般形式为(为常数,并且)。使二元一次方程的左右两边的值相等的未知数的值叫二元一次方程的'解,一个二元一次方程一般有无数组解。
3、方程组含有两个未知数,并且含有未知数的项的次数都是1,这样的方程组叫二元一次方程组。使二元一次方程组每个方程的左右两边的值相等的未知数的值叫二元一次方程组的解,一个二元一次方程组一般有一个解。
4、用代入法解二元一次方程组的一般步骤:观察方程组中,是否有用含一个未知数的式子表示另一个未知数,如果有,则将它直接代入另一个方程中;如果没有,则将其中一个方程变形,用含一个未知数的式子表示另一个未知数;再将表示出的未知数代入另一个方程中,从而消去一个未知数,求出另一个未知数的值,将求得的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值。
5、用加减法解二元一次方程组的一般步骤:(1)方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使同一个未知数的系数相等或互为相反数;(2)把两个方程的两边分别相加或相减,消去一个未知数;(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入原方程组中的任何一个方程,求出另外一个未知数的值,从而得到原方程组的解。
6、解三元一次方程组的一般步骤:①观察方程组中未知数的系数特点,确定先消去哪个未知数;②利用代入法或加减法,把方程组中的一个方程,与另外两个方程分别组成两组,消去同一个未知数,得到一个关于另外两个未知数的二元一次方程组;③解这个二元一次方程组,求得两个未知数的值;④将这两个未知数的值代入原方程组中较简单的一个方程中,求出第三个未知数的值,从而得到原三元一次方程组的解。
学校中考数学必背复习知识点归纳篇3
知识点1:一元二次方程的基本概念
1.一元二次方程3x2+5x-2=0的常数项是-2.
2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.
3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.
4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.
知识点2:直角坐标系与点的位置
1.直角坐标系中,点A(3,0)在y轴上。
2.直角坐标系中,x轴上的任意点的横坐标为0.
3.直角坐标系中,点A(1,1)在第一象限。
4.直角坐标系中,点A(-2,3)在第四象限。
5.直角坐标系中,点A(-2,1)在第二象限。
知识点3:已知自变量的值求函数值
1.当x=2时,函数y=的值为1.
2.当x=3时,函数y=的`值为1.
3.当x=-1时,函数y=的值为1.
知识点4:基本函数的概念及性质
1.函数y=-8x是一次函数。
2.函数y=4x+1是正比例函数。
3.函数是反比例函数。
4.抛物线y=-3(x-2)2-5的开口向下。
5.抛物线y=4(x-3)2-10的对称轴是x=3.
6.抛物线的顶点坐标是(1,2)。
7.反比例函数的图象在第一、三象限。
知识点5:数据的平均数中位数与众数
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
知识点6:特殊三角函数值
1.cos30= 。
2.sin260+ cos260= 1.
3.2sin30+ tan45= 2.
4.tan45= 1.
5.cos60+ sin30= 1.
知识点7:圆的基本性质
1.半圆或直径所对的圆周角是直角。
2.任意一个三角形一定有一个外接圆。
3.在同一平面内,到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
4.在同圆或等圆中,相等的圆心角所对的弧相等。
5.同弧所对的圆周角等于圆心角的一半。
6.同圆或等圆的半径相等。
学校中考数学必背复习知识点归纳篇4
易错点1:数形结合思想方法的运用,还应注意结合图像性质解题。函数图象与图形结合学会从复杂图形分解为简单图形的方法,图形为图像提供数据或者图像为图形提供数据。
易错点2:熟练掌握各种函数解析式的求法,有几个的待定系数就要几个点值。
易错点3:自变量的取值范围有:二次根式的被开方数是非负数,分式的分母不为0,0指数底数不为0,其它都是全体实数。
易错点4:两个变量利用函数模型解实际问题,注意区别方程、函数、不等式模型解决不等领域的问题。
易错点5:利用函数图象进行分类(平行四边形、相似、直角三角形、等腰三角形)以及分类的求解方法。
易错点6:与坐标轴交点坐标一定要会求。面积最大值的求解方法,距离之和的最小值的`求解方法,距离之差最大值的求解方法。
易错点7:各个待定系数表示的的意义。
易错点8:利用图像求不等式的解集和方程(组)的解,利用图像性质确定增减性。
学校中考数学必背复习知识点归纳篇5
一、 重要概念
1。数的分类及概念
数系表:
说明:“分类”的原则:1)相称(不重、不漏)
2)有标准
2。非负数:正实数与零的统称。(表为:x≥0)
常见的非负数有:
性质:若干个非负数的'和为0,则每个非负担数均为0。
3。倒数: ①定义及表示法
②性质:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1时,1/a1;D。积为1。
4。相反数: ①定义及表示法
②性质:A.a≠0时,a≠-a;B.a与-a在数轴上的位置;C。和为0,商为-1。
5。数轴:①定义(“三要素”)
②作用:A。直观地比较实数的大小;B。明确体现绝对值意义;C。建立点与实数的一一对应关系。
6。奇数、偶数、质数、合数(正整数—自然数)
定义及表示:
奇数:2n-1
偶数:2n(n为自然数)
7。绝对值:①定义(两种):
代数定义:
几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。
②│a│≥0,符号“││”是“非负数”的标志;③数a的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
学校中考数学必背复习知识点归纳篇6
一、比和比例的性质
性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;
性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;
性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)
性质4:若a: b=c:d,则ad = b(即外项积等于内项积)
正比例:如果ab=k(k为常数),则称a、b成正比;
反比例:如果ab=k(k为常数),则称a、b成反比.
二、比和比例在行程问题中的体现
在行程问题中,因为有速度,所以:
当一组物体行走速度相等,那么行走的路程比等于对应时间的反比;
当一组物体行走路程相等,那么行走的速度比等于对应时间的反比;
当一组物体行走时间相等,那么行走的速度比等于对应路程的.正比.
1.A和B两个数的比是8:5,每一数都减少34后,A是B的2倍,试求这两个数.
学校中考数学必背复习知识点归纳篇7
1.不在同一直线上的三点确定一个圆。
2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧
推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
推论2 圆的两条平行弦所夹的弧相等
3.圆是以圆心为对称中心的中心对称图形
4.圆是定点的距离等于定长的点的集合
5.圆的内部可以看作是圆心的距离小于半径的点的集合
6.圆的外部可以看作是圆心的距离大于半径的点的集合
7.同圆或等圆的半径相等
8.到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的.弦 相等,所对的弦的弦心距相等
10.推论 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。
11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角
12.①直线L和⊙O相交 d
②直线L和⊙O相切 d=r
③直线L和⊙O相离 d>r
13.切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线
14.切线的性质定理 圆的切线垂直于经过切点的半径
15.推论1 经过圆心且垂直于切线的直线必经过切点
16.推论2 经过切点且垂直于切线的直线必经过圆心
17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角
18.圆的外切四边形的两组对边的和相等 外角等于内对角
19.如果两个圆相切,那么切点一定在连心线上
20.①两圆外离 d>R+r ②两圆外切 d=R+r
③.两圆相交 R-rr)
④.两圆内切 d=R-r(R>r) ⑤两圆内含dr)
学校中考数学必背复习知识点归纳篇8
一、数与代数
Ⅰ、数与式
1.有理数的加法、乘法运算
同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。
同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。
2.合并同类项
合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。
3.去、添括号法则
去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号;
括号前面是负号,去、添括号都变号。
4.单项式运算
加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。
5.分式混合运算法则
分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;
变号必须两处,结果要求最简。
6.平方差公式
两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。
7.完全平方公式
首平方又末平方,二倍首末在中央;和的.平方加再加,先减后加差平方。
8.因式分解
一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根,
换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。
【注】一提(提公因式)二套(套公式)
9.二次三项式的因式分解
先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。
10.比和比例
两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积;
前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比;
两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比;
商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。
11.根式和无理式
表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制;
无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。
12.最简根式的条件
最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
本站(www.100xue.net)部分图文转自网络,刊登本文仅为传播信息之用,绝不代表赞同其观点或担保其真实性。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系(底部邮箱),我们将及时更正、删除,谢谢